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Abstract-An improved model is presented for the prediction of gas and ware temperature profiles during 
the firing of refractory blocks in tunnel kilns. The model represents the kiln as a series of plug-flow regions, 
in which heat transfer to ware occurs, interspaced by well-stirred adiabatic regions, in which burners and 
air inleakages are introduced. The model is constructed in two forms differing in treatment of unsteady 
conduction in the ware. The two-dimensional form gives good agreement with measured ware temperature 
profiles. The simpler one-dimensional form predicts gas temperature profiles accurately, and estimates 
representative ware temperatures. Both models solve the unsteady conduction equation with strongly non- 

linear boundary conditions due to radiation. 

INTRODUCTION 

REFRACTORIES are vital to the construction of a high 
temperature process plant, e.g. furnaces for the met- 
allurgical industries. Their manufacture includes a 
high temperature firing stage for hardening and matu- 
ration prior to service. In the modern ceramic indus- 
try, firing is usually carried out in tunnel kilns. The 
kilns are physically large, lengths often exceeding 
100 m, aerodynamic flow patterns are complicated by 
multiple burners, air inleakages and the refractory 
ware setting (stacking) geometry. 

The layout of a typical kiln is shown in Fig. 1. The 
ware to be fired is set on rail-mounted cars which are 
pushed intermittently along the kiln from field 1. Peak 
temperatures (up to 2070 K) are achieved in the firing 
zone, before the fired ware is cooled at a controlled 
rate by passage against incoming ambient air. Com- 
bustion is limited to the fields of the firing zone, where 
wall or roof mounted burners are fired into the spaces 
between adjacent ware settings. Exhaust gases leave 
the kiln at the ware input end. A cross-section of a 
tunnel kiln with five ‘blades’ of ware set on a refractory 
lined kiln car is shown in Fig. 2. Each car would 
typically, have two separate rows of five blades set on 
it. Each blade is idealized as a continuous rectangular 
block; in reality, blades are built up from stacking 
individual pieces of ware, which may not be linear in 
all dimensions. Air inleakage occurs along the length 
of the kiln, but particularly in the preheat section 
where it may be deliberately encouraged to dilute the 
hot exhaust gas flow. 

Control of tunnel kilns has tended to rely on oper- 
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ator experience and empiricism because of the 
inherent process complexity. The firing schedule, i.e. 
time-temperature profile, desired for a particular 
refractory product is related to a regular temperature 
gradient along the kiln length, as measured by roof- 
mounted thermocouples, and to a specified car setting 
pattern and push rate. Kiln control is then concerned 
with adjusting burners and airflows to maintain the 
specified roof temperature profile. Traditionally, the 
adjustment has been manual, but newer technology 
employs microprocessor control of motorized valves, 
for fuel and air, to maintain the specified profile. 

Increasing demands for tighter control of product 
quality and reduced operating costs, particularly fuel, 
require a more fundamental understanding of kiln 
behaviour. The kiln operator needs to be able to 
specify optimum process conditions in which every 
element ofevery piece of ware is exposed to the correct 
firing schedule, at minimum overall firing cost. The 
optimum condition will vary according to shape, size 
and composition of the ware. Determination of this 
optimum requires a mathematical simulation of the 
heat transfer processes occurring within the kiln, in 
order to be able to predict ware temperature dis- 
tribution at all points during firing. Such a simulation 
will enable the operator to study the response of any 
refractory product to any particular set of kiln oper- 
ating conditions. 

Published work on tunnel kiln modelling is limited. 
A practical model was reported by Gardiek and 
Scholz [ 11, who assumed that the ware had a uniform 
temperature at each cross-section, and moved con- 
tinuously. Only heat transfer between ware and gas 
was considered, and heat losses and air inleakage were 
neglected. The heating and cooling zones of the kiln 
approximated to a counter-current heat exchanger 
at steady-state, and the resultant equations could be 
solved analytically. The firing zone was assumed well 
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NOMENCLATURE 

A area per unit length [m’] Greek symbols 

; 
effective blade width [m] Ix thermal diffusivity [m2ss1] 
blade height [m] 

C heat capacity [J kgg’ Km ‘1 ; 
emissivity 
gas temperature [K] 

C distance from car base to blade top surface p density [kg m- ‘1 

[ml z transmissivity. 
D blade separation [m] 
d equivalent diameter of largest cross- Superscripts 

section of kiln [m] C convective 

E emissive power [w m ‘1 P iteration number 

F flow rate [kg s-l] r radiative. 

F /W configuration factor 
h coefficient of heat transfer [W mm2 K-‘1 

Subscripts 
ambient 

J source term in transient conduction 
equation [w m-‘1 

: deck 

k thermal conductivity [w m-’ K-~‘] 
g gas 

Q heat absorbed per unit time per unit length “’ 
increments in x-, Y-directions 

Iwm-‘I 
M number of increments in Y-direction 
N 

Y heat flux absorbed [w rn--‘] 
number of increments in .x-direction 

n 
T solid temperature [K] 

number of time step 
S surface 

t time [s] 
u kiln wall heat loss coefficient [W m-* K- ‘1 

wall 

kiln car velocity [m s- ‘1 
1 initial state. 

V 

X Cartesian coordinate : horizontal and Dimensionless groups 
normal to axis [m] Nu Nusselt number 

Y Cartesian coordinate : vertical [m] Pr Prandtl number 
Z Cartesian coordinate : axial [ml. Re Reynolds number. 

_ HEATING 
ZONE - - 

F;;/y - - 
%kNG- 

TO DRIERS 
EXHAUST 

111213141.....,....... , ,,, I.... . . . . ..__.I m, , . . _. " 

FIELD NUMBERS 

FIG. 1. Layout of typical tunnel kiln. 

stirred by the burners, giving constant gas tem- 
perature in the axial direction. The model is of limited 
accuracy but allows for an investigation of physical 
principles. 

Abbakumov [2] presented a model in which the 
blades were considered as infinite flat plates with tem- 
perature profiles governed by the one-dimensional 
conduction equation. Again the steady-state, continu- 
ous flow assumptions were made, and heat transfer 
was limited to that between ware and gas. Radi- 
ative heat transfer was approximated by a heat trans- 
fer coefficient, and after each field calculation 

additional considerations such as heat loss, heat 
absorbed by the kiln cars, and inleakages were taken 
into account. The model calculates the fuel require- 
ment to each burner, and provides estimates of the 
gas temperature profile and ware temperature profile 
in one dimension and time. However, accuracy is 
limited, and the important, vertical temperature 
gradients in the ware are ignored. 

The obvious scope for improvement has prompted 
the current work [3], resulting in a model which pro- 
vides a good prediction of both ware and gas tem- 
perature profiles. 
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d”“““‘llrn 
FIG. 2. Kiln cross-section showing five blades of ware set on 

a kiln car, and sand seals to rninjmrre gas leakage. 

PHYSICAL BASIS OF THE MODEL 

The principal aim of modelling is the prediction of 
ware temperatures during firing. Heat is transferred 
between gas and ware predominantly by convection, 
with only a modest contribution from radiation. How- 
ever, the high temperatures involved create strong 
radiative transfer between solid surfaces within the 
kiln. Heat entering the ware surface penetrates by 
conduction only, Provided that the combustion gases 
are evenly distributed around each blade, the rate of 
conduction within the solid governs the rate at which 
refractories may be fired ~tisfacto~ly ]4]. 

Treatmenf of conduction 
The ware and supporting kiln car, which may 

exceed the thermal mass of the ware, are subject to 
unsteady heat conduction as they traverse the kiln. 
The blades are represented as continuous slabs since 
perfect thermal contact between the constituent pieces 
is assumed. For an isotropic, three-dimensional solid, 
the process is governed by 

(14 
subject to the initial conditions 

T(x, Y, r, t = 0) = J-c&, Y, z) (lb) 

and the boundary condition of either specified surface 
temperature 

r, = f@, Y, ~4 UC) 

or heat flux 

d2; 
y& = f (X,Y, 2, t) 

where c&kin indicates differ~tiat~on outward and nor- 
mal to the surface. The heats of the reactions for the 
changes taking place during firing have been estimated 
by McColm [5] for a clay-based ceramic material. The 
combined contributions from sir&ring (4 kJ kg-‘), 
production of a 5% liquid phase (15 kJ kg-‘), and 
solid state ~nsfo~atio~ (40 kJ kg-‘) are far out- 

weighed by the sensible heat requirement for firing to 
1770 K (1200 kJ kg-‘). It has been assumed therefore 
that f may be neglected. Similarly, since the physical 
properties, k, p, C of fired refractory materials vary 
only weakly with temperature, the thermal diffusivity 
may be taken as a constant, allowing equation (1 a) to 
be written in the form 

8T a2T a2T a2T 
-=L% p+-y+y. 
at [ ay az 1 

(2) 

The equation may be further reduced to two 
dimensions only, by disregarding conduction in the 
axial direction. The relatively minor variation in sur- 
face temperature along the axis of a blade, compared 
to the surface to centre variation provides justifica- 
tion for this ass~ption. 

This treatment is acceptable in the central portion 
of a blade where the intluence of axial conduction 
from the end faces is negligible. However, for the heat 
transferred into the ware and the heat transferred 
from the gas to be consistent, the end faces must 
be assumed unav~lable for heat transfer. The two- 
dimensional treatment of conduction therefore ap- 
proximates a real blade as a rectangular parallel- 
epiped with insulated end faces. 

A simpler version of the model solves the con- 
duction equation in one dimension only, i.e. laterally 
into the ware, whilst the two-dimensional version pro- 
vides for analysis in the vertical direction also, The 
unsteady conduction equation is solved in the one- 
dimensional solid bounded by parallel planes sep- 
arated by a, the effective thickness of the blade 

2 x volume of blade 

a = surface area of blade 

so that the volume : surface ratio is identical to the 
original blade. This treatment is much less con- 
servative than the two-dimensional treatment of con- 
duction since the effective thickness will always be less 
than the smallest ~mension of a blade. 

In both cases the ware moves steadily through the 
kiln and, therefore, axial displacement, z, and time 
within the kiln, t, are related by 

z= vt. 

Treatment of &o~ect~o~ 
Forced convection is the dominant mode of heat 

transfer from the gas, especially in the heating and 
cooling zones where the gas phase has a low emissivity. 

Experiments have been conducted on a laboratory 
model in order to provide estimates of convective heat 
transfer coefficients, since direct measurements on a 
working kiln are impracticable. A l/IO scale model of 
a section of a production kiln was constructed through 
which heated air was passed. The model provided for 
geometric similarity, and also for acceptable dynamic 
similarity 163, with Reynolds numbers of around 
20~. Convective heat transfer coefficient estimates 
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were derived from measurements of heat fluxes by 
heat flow meters stuck to the faces of the chrome 
magnesite blocks used to simulate the blades of the 
real kiln. Data were correlated in the form 

NM = f (Re, Pr, D/d). 

Generally, heat transfer coefficients to side, top, and 
front faces of blades are found to be of the same order, 
whilst those to the back faces are perhaps 50% 
lower. Increasing blade separation, tends to reduce 
heat transfer. Actual values of the heat transfer co- 
efficient measured ranged from 36.0+ 1.0 to 100.8 + 
4.3 W me2 K-l. 

Convective heat transfer has been incorporated into 
the model by a series of heat flow/flux expressions. In 
the case of the one-dimensional model 

qc = !I(@- T,). (34 

In the two-dimensional model allowance must be 
made for heat exchange into horizontal as well as 
vertical faces (Fig. 3) 

4 1 (x>” = h,,,(@ - T(x, 0)) (3b) 

NY)” = Le(@ - T(O, v)) (3c) 

q3(x)’ = hbottom(@ - T(x, b)) (3d) 

Q”w = h,A,(O - Tw). (3e) 

Treatment of radiation 
The radiation exchange within the kiln is deter- 

mined by a simple zone method. Fortunately the 
geometry of a typical tunnel kiln facilitates the neglec- 
tion of axial radiative transfer since this allows a 
marching method of solution to be adopted. The gas 
phase temperature is assumed constant at each cross- 
section and all surfaces are black. 

In the one-dimensional model the radiative ex- 
change is between the gas, the kiln wall and one 
surface representing the ware. In the two-dimensional 
model the ware surface is divided into incremental 
areas. 

t 
93(x) 

FIG. 3. Representation of heat flows into the ware and kiln 
car for the two-dimensional model. 

In the two-dimensional model (Fig. 4) for an 
element i on the blade top surface 

q: = E,z,, + cBEg - E, (4a) 

A surface element j on the blade side receives much 
less radiation since it only views the kiln wall as a 
narrow strip. The adjacent blade surface is assumed 
to be at nearly the same temperature as j and therefore 
there is negligible net radiative heat transfer between 
them 

q; = F,,&&~sw~ +-E& - E,). (4b) 

The configuration factor F,, is calculated from an 
exact formula [7]. The radiative properties of the gas, 
i.e. z,~, z,,, Ed are calculated from the empirical cor- 
relations of Hadvig [8] fitted to the data of Hottel [9]. 

Treatment of ware movement. The intermittent 
pushing of the kiln cars is approximated by steady 
motion. Analysis of kiln wall thermocouple response 
to pushing indicates that this approximation intro- 
duces little error. After an initial drop of around 100 
K, recovery to the local steady-state condition occurs 
within a period of 15 min which is short in compari- 
son with the pushing interval of 5 h, or more. High 
thermal inertia of the walls, and predominance of 
radiant exchange permits this prompt temperature 
equalization. 

Treatment of gasjow. Two major assumptions have 
been made in treating the kiln gas. The flow has been 
considered in the axial direction only, and gas tem- 
perature and composition have been considered uni- 
form at each cross-section. The first assumption is 
suggested by the dimensions of the kiln and the linear 
setting patterns of the ware, and can be justified by 
observations made on production kilns. 

The assumption of cross-sectional uniformity is 
suggested by the combination of the natural mech- 
anics of turbulence and convection. The natural tend- 
ency to thermal stratification due to buoyancy, with 
hotter gas collecting in the roof arch, is countered by 
the vigorous mixing effect of burners and of roof- 
mounted artificial mixing devices. Burners, firing per- 
pendicular to the main gas flow, are mounted either on 
alternate sides of the kiln, or opposed, but at different 
heights, on the same cross-section to induce swirl. 
Detailed measurements on production kilns indicate 
that this second assumption is justified, since tem- 
perature and composition profiles across the kiln tend 
to be flat except in the regions immediately adjacent 
to the kiln wall. 

GAS 

!Aj E 
M’ 

FIG. 4. Incrementization of ware surface area for calculation 
of radiant heat exchange in the two-dimensional model. 
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Treatment of combustion and air inleakage 

The predominant use of natural gas in well-aerated 
premixed flames in modern tunnel kilns renders 
detailed consideration of the combustion process 
unnecessary. Flames are essentially non-luminous so 
that burners provide only an input of heat, and 
momentum to induce mixing, in the gaps between 
adjacent cars. They do not introduce intense radiation 
sources in close proximity to the blade ends. It is 
therefore permissible to consider the burners as an 
input of hot combustion gases which mix immediately 
with the kiln gas flow without transferring any heat 
to the ware. 

Air inleakage occurs at various points in the kiln 
with the major part being induced deliberately for 
dilution purposes. Local inleakage rates can be related 
to operating conditions on particular kilns. The 
inleakages are treated in a similar manner to flames, 
i.e. by local adiabatic mixing with kiln gases. 

The gas temperature, flow rate and composition 
after burners and inleakages are calculated by simple 
mass and energy balances. 

Treatment of heat losses 
Between 5 and 10% of total thermal input to a 

kiln will be lost through the kiln structure. Detailed 
measurement of kiln wall and surface temperature 
distributions may be used to calculate the total heat 
loss from each field of a particular kiln. The measured 
heat loss distribution can then be input into a simu- 
lation of that kiln. 

THE SOLUTION PROCEDURE 

The idealization of the kiln as a continuous process 
operating at steady state, and the introduction of bur- 
ners and inleakages as discrete energy and mass inputs 
into the gas stream, leads to the kiln being represented 
as a series of plug-flow regions interspaced by well- 
stirred adiabatic regions. In the well-stirred regions 
new gas flow rates and temperatures are calculated 
from mass and energy balances. In the plug-flow 
regions gas and solid temperatures are governed by 
differential equations : for gas temperature (z-direc- 
tion against gas flow) 

d@ 2 -= 
dz F$, 

O(L) = 0, 

(54 

(5b) 

for ware temperatures 

L[T] = 0 @a) 

T(r = 0) = TO (6b) 

where the operator L represents : 

(i) in the case of the one-dimensional model 

(ii) in the case of the two-dimensional model 

with specified heat flux boundary conditions in both 
cases. 

These equations must be solved in conjunction with 
the convective and radiative transfer equations of the 
preceding section. The operator L, is parabolic creat- 
ing a marching problem, i.e. the solution marches 
out from the initial state, guided and modified by the 
boundary conditions as they are encountered. Since 
O(L) and T, are specified at opposite ends of the kiln 
the model is a boundary value problem also. 

It may be noted that if unsteady conduction in the 
ware is modelled in three dimensions, the third spatial 
derivate a2T/az2 is introduced, and the equation 
becomes elliptical. Solution will then depend on the 
boundary conditions at forward time (or z) steps 
which would have to be satisfied simultaneously. 

The numerical methods must obey the condition of 
absolute stability so that the effect of rounding and 
truncation errors does not increase at subsequent time 
steps. This has led to the selection of implicit rather 
than explicit methods here. In addition attention must 
be paid to the mesh size (Ax and Ay) in order to avoid 
problems of stiffness. 

The problem of inherent instability would be en- 
countered over large regions of the kiln if calculation 
of the ware temperature proceeded with the gas flow. 
However, this problem is avoided by performing cal- 
culations against the gas flow. The choice of cal- 
culation against the flow is also desirable because the 
unknown ware profiles at the cooling zone end of the 
kiln represent more unknowns than the unspecified 
exhaust temperature at the heating zone end. 

Numerical solution of the unsteady conduction 
equation has been achieved by the well-known finite 
difference methods of Crank and Nicolson [lo] for the 
one-dimensional case, and of Peaceman and Rachford 
[ 111, the alternating direction implicit (ADI) method, 
for the two-dimensional case. Since the equations for 
gas and ware temperatures must be solved in parallel, 
and the boundary conditions are nonlinear here, these 
methods have had to be used in conjunction with 
an iterative procedure to calculate heat transfer at a 
forward time step (i.e. a predictor-corrector method). 

Solution of the one-dimensional model plug-flow region 
Equations (11) and (12) govern temperatures in the 

one-dimensional model, with boundary conditions 

aT 
atx=O, -= - 4(@, T) 

ax tL 

aT (0, T) atx=a, -=q--- 
ax u 

04 

L[T] = ; - u,Z; 
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Q, and q are non-linear functions of gas and ware 
surface temperatures. 

The kiln is divided into a number of increments of 
length AZ in the axial direction and the ware is divided 
into strips of thickness Ax in a lateral direction (Fig, 

5). 
The unsteady conduction equation is approximated 

by the well-known Crank-Nicolson scheme 

Rearranging with unknowns on the left 

-rT,- I,“+ I +(23_2r)Ti,fZ+, -rT,, 1.H 

= ~7; r,n +(2-2r)Z’i,~+rT’i:.,,.,. (8b) 

The specified heat flux boundary conditions are 
approximated by introducing fictitious external tem- 
peratures To,” and T,, ,.n such that 

7’0,” = T,,, + 2A-% Ia (9a) 

T ‘v+ I.# - - TN- I.,, + 2A.xq,, /a W) 

where in general q,,, the heat flux absorbed at time 
step n is a non-linear function of 0 and T,. Inserting 
equation (9a) into equation (8b), at i = 1 

(242r)T,,~+,-2rT2,~+1-2rA~q,-tt/~ 

= (2 - 2r) T,,, + 2rTz,,l f ‘LrAxq, /cc (SC) 

similarly, at i = N. 
The system of algebraic equations (9), for i = I-N, 

can be written in matrix notation as 

AT,, i -F,, , = BT, -I-F, Wa) 

where 

i$ 2 i=N 
x-0 X=3 

FIG. 5. Incrementization of ware for calculation of transient 
conduction in the one-dim~nsjona~ model. 

and 

hence 

A= 

B--_ 

2+2r -2r 

--I 2+2r ---Y 

-r 2+2r -r: 

2-2r 2r I 
r 2-2r Y I 

r 2-b 
d 

F,,=2r$[qn,0 ,..., O,q,,]’ 

T rti 1 = A-‘(BT,~+F,~fF,+,). 

(lob) 

(IOC) 

(IOd) 

Since A is a tridiagonal matrix it can be inverted 
directly by the Thomas algorithm, a process similar 
to Gaussian elimination. F,,. , must be found by 
iteration. 

The differential equation governing gas tempera- 
ture (5a) is solved by the trapezoidal method 

@,+I = O,+Az(OI,+O&+,)/2 (12) 

where 0’ = -Q,/F’&, Q, being a non-linear 
function generally, must be found by an iterative 
procedure. 

The equations governing heat transfer between gas 
and solid surfaces require a value of the temperature 
of the wall, in addition to that of the ware surface 
and adjacent gas. The value of T, is determined by 
bisection from 

F(Y’,) = A,UjT,-C&)-Q, = 0 (13) 

T, must lie between either 0 and O,, or T, and 0,. 
The solution then proceeds by calculation of the 

functions F,, , and y,, , at a forward time step by the 
prediction~orr~ct~on procedure (g = AZ@‘). 

Prediction is provided by 

AT:, 1 = BT, + 2F,, (14a) 

@A+ I = @,+fJ,,. (14b) 

Correction is provided by 

AT;;; = BT,+F,,+F$+, (15a) 

gP+’ = o,+(g,~+.~:+,)/z. “+I (t5b) 

Temperature calculation proceeds from unknown 
values at the nth time step, through predicted values 
at the n+ Ith step, to calculated values at the 4+ Ith 
step (by the Thomas algorithm). Correction of the 
values at the n+ lth step are applied and the process 
repeated until j ?I’{: : - Tt+ , f is less than the specified 
error. 
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Solution of the two-dimensional model of plug-flow 

region 
Visualization of this region has been provided in 

Fig. 3, and also in Fig. 4. The gas temperature is 
governed by equation (5a). 

Ware temperatures are governed by the two- 
dimensional conduction equation for the ware 

and for the kiln car 

with initial conditions 

T(x, Y, 0) = T&Y Y) 

and boundary conditions 

aty = 0, 

at y = c, 

3T -=+!f? (l&j) 

ay 

aT 4(x) -=-- 
ay ad 

(1W 

at x = 0, y < b, 

at x = a, y < b, 

aT 
- = 
ax 

* (16f) 

!$+) (lhg) 

at x = 0 or a, y > b, 
aT 

- 0. 
ax- 

(16h) 

This system of equations is solved using the AD1 
method whereby the value of one of the two second- 
order derivatives is supplied by implicit approxi- 
mation, the other by explicit approximation. In the 
first time step PT/&* is approximated implicitly, 
resulting in (M- 2) independent systems of equations, 
each system consisting of (N-2) equations in tri- 
diagonal form. Then in the second time step a2T/ay2 
is approximated implicitly, resulting in (N-2) inde- 
pendent systems of (M-2) equations in tridiagonal 
form. The Thomas algorithm is used to solve the 
tridiagonal matrix in both cases. Each step on its 
own is unstable, but the AD1 approximations produce 
overall unconditional stability over the double time 
steps. 

The boundary conditions are again of the pre- 
scribed heat flux type, and are approximated using 
the fictitious external temperature concept used in the 
one-dimensional model, 

Strictly speaking, at the interface between the kiln 
and the ware the condition 

aT aTd 
“~=“d~ (174 

applies. Fortunately, it is acceptable to treat the 
interface merely as a region of variable conductivity. 
Unsteady conduction then obeys 

This implies condition (17a) since otherwise (a/ 
ay)@(aT/ay)) will be infinite and hence pC(aT/at) will 
be infinite towards a temperature which satisfies equa- 
tion (17a). 

The modelling scheme may be written in matrix 
form for the nth time step 

Al T1,+l +Fl,+, = Bl Tl,+Gl, 

and the n + 1 th time step 

(lga) 

A2T1,+2+F2,+2 =B2T2,+,+G2,+, (18b) 

where Al and A2 are the tridiagonal matrices. Both 
Tl, and T2, are vectors of temperatures at the nth 
time step taken row by row, and column by column, 
respectively. 

The column matrices Fl and F2 represent implicitly 
calculated boundary conditions ; aTlax taken row by 
row, and aT/dy taken column by column, respectively. 

The column matrices Gl and 62 represent explicitly 
calculated boundary conditions ; aTjay taken row by 
row, and aT/i?x taken column by column, respectively. 

For each double time step used in the AD1 method 
the gas temperature is calculated in a single step using 
the trapezoidal rule 

where 

0 n+ 2 = 0, - 2AzQg.n c I IF, C, 

Q w+ I = (Q,, + Qwz+ 2W (19b) 

The value of wall temperature, T,, necessary for solu- 
tion of the heat transfer equation is found by bisection 
from 

F(T,) =A,U(T,-0,)-Q,,, = 0. (20) 

A prediction-correction procedure, similar to the one- 
dimensional model, is used to permit solution of the 
overall system of equations. 

Solution proceeds from known temperatures at the 
nth step, through predicted temperatures at then + 1 th 
and n+2th step, via the correction procedure, to 
acceptable values at the next time step. 

Well-stirred regions 
When a burner or inleakage is encountered the new 

gas mass flow rates and enthalpy are calculated by the 
Newton-Raphson method. The new values are then 
fed to the next plug-flow region calculation. 

Overall solution scheme and the boundary value problem 
Integration against the gas flow means that the 

exhaust gas temperature, O(O), is unknown initially. 
Solution is accomplished by a shooting method 
whereby two initial estimates of O(0) are made, 
the complete system of plug flow and well-stirred 
regions calculated, and the resultant values of gas 
inlet (ambient air at the cooling end of the kiln) 
temperatures are compared with the desired value. 
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New estimates of O(0) are generated, and the pro- 
cess repeated until the estimated gas inlet tempera- 
tures become sufllciently close to the desired value. 

MATHEMATICAL MODEL PERFORMANCE 

The model has been tested by comparison against 
data from a production kiln of Steetley Refractories 
Limited (Worksop, Nottinghamshire). 

An indication of the potential of the models is given 
dia~amma~~cally in Figs. 610. The first diagram, Fig. 
6, gives a comparison of the predicted gas temperature 
profiles for both versions of the model for one 
particular kiln operating condition. There is a clear 
disparity between the two profiles, particularly in the 
firing and cooling zones. Peak temperatures predicted 
are, 2003 K in field 17 (one-dimensional) and 1924 K 
in field 17 (two-dimensional). The step nature of the 
curves in the heating and firing zone is a function of 
the calculation procedure moving between plug flow 
and adiabatic mixing regions. The sharp change of 
slope in field 32 of the cooling zone coincides with the 
removal of air to the driers, whilst the smaller pertur- 
bation in field 23 corresponds to the introduction of 
combustion air. Introduction of fuel creates a sharp 
transition between the firing and cooling zones. 

Figure 7 compares kiln wall temperature profiles. 
The comparison is between the kiln operating limits, 
actual kiln measurements, and the one-dimensional 
model prediction at two different airflows; that mea- 
sured, and at a reduced rate and lower fuel rate (by 
15%). The prediction matches plant data well at the 
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FIG. 6. Gas temperature profile: comparison between the 
predictions of the one- and two-dimensional models for one 

kiln operating condition. 
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FIG. 7. Kiln wall temperature profiles : comparison between 
the one-dimensional model prediction, plant measurements, 

and kiln design operating limits. 

g2 ----COOLING AIR =13Od mls-', -7S%RiEL : 

FIG. 8. Oxygen concentration profiles : comparison between 
the predictions of the one-dimensional model at two different 

cooling air and fuel flow rates. 

FIELD NUMBER 

FIG. 9. Ware surface temperature profiles: comparison 
between the predictions of the two-dimensional model at 
two different cooling air and fuel flow rates, and planr 

measurements. 
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FIG. IO. Temperature distribution around ware in fields 10 
and 12 for one kiln operating condition : comparison 
between the prediction of the two-dimensional model and 

plant measurements. 

actual tlow rate in the heating and firing zones, 
although better matching is achieved at the lower flow 
rate towards the cold end of the kiln. However, at the 
kiln outlet the predicted temperatures converge. This 
figure demonstrates the accuracy of the one- 
dimensional model in predicting kiln wall tempera- 
tures in the heating and firing zone, and also suggests 
the potential of the model for determining better oper- 
ating conditions with regards to fuel consumption and 
safeguarding of kiln linings. 

Figure 8 shows a prediction of the oxygen con- 
centration profiie for the one-dimensional model 
under the same conditions as in Fig. 7. Air enters the 
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kiln at the cold end, and is subsequently diluted by 
fuel to a minimum oxygen concentration of around 
7% in the firing zone. Air inleakages increase oxygen 
concentration thereafter. Similar profiles can be gen- 
erated for other gaseous species. 

Figures 9 and 10 demonstrate the potential of the 
two-dimensional model for predicting ware tem- 
perature profiles. Figure 9 compares plant measure- 
ment of ware surface temperature with predictions of 
the model at two airflows. The quality of prediction 
is shown to be very sensitive to the airflow used, which 
is a measurement subject to some error given the huge 
flows involved on the production plant. The measured 
airflow prediction gives excellent agreement in the 
heating zone, with some divergence thereafter. How- 
ever, a near perfect match along the whole kiln length 
is achieved with an airflow reduced by 4.7%. 

Figure 10 compares local temperatures, derived 
from an instrumented kiln car, with the model pre- 
dictions, at two field locations within the heating zone, 
for one particular test condition. It can be seen that 
the kiln wall temperatures predicted by the model 
coincide almost exactly with the plant measurement. 
Furthermore, the temperatures predicted for the blade 
surfaces (top, side and base) and centre are in good 
agreement with the plant data, given the uncertainty 
of locating individual thermocouple tips in the experi- 
ment. Although correspondence is not perfect, the 
prediction of trends in temperature differences around 
the blade is particularly instructive, highlighting a 
measured maximum difference, between top centre, 
and base centre of over 330 K in each case. 

CONCLUSIONS 

(1) A model has been developed to simulate the 
firing of refractories in natural gas fired tunnel kilns. 
The model considers the kiln as a series of plug-flow 
regions, in which heat is transferred between kiln gases 
and the ware, and well-stirred adiabatic regions, in 
which mass inputs of fuel or inleaking air occur. 

(2) Heat transfer into or out of, the ware, in the 
plug-flow regions, is limited by unsteady conduction. 
The model includes two options for considering this 
unsteady conduction. A one-dimensional treatment 
of the unsteady conduction, employing the method 
of Crank and Nicolson, leads to a time-dependent 
simulation in the one-dimensional space of the kiln. 
A two-dimensional treatment of the unsteady con- 
duction, employing the AD1 method of Peaceman and 
Rachford, leads to a time-dependent simulation in 
two-dimensional space of the kiln. Use of the former 

option, which requires less computing time, is limited 
to situations where accurate prediction of the ware 
internal temperature distribution is not sought. 

(3) Comparison with production plant data dem- 
onstrates the potential of the one-dimensional version 
of the model for prediction of gas and kiln wall tem- 
perature, and gas composition profiles along the kiln. 

(4) Comparison with production plant data dem- 
onstrate the potential of the two-dimensional version 
of the model for predicting the temperature dis- 
tribution within the ware as it traverses the kiln. 

(5) The model has been developed as an aid to 
improved refractory tunnel kiln operation, and may 
be used for kiln optimization, investigation of 
occasional firing problems, and for establishing desir- 
able firing conditions for new products. Financial 
benefits may accrue from increased product through- 
put, reduction in firing rejects, reduced specific fuel 
consumption, and improved kiln lining life. 
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UN MODELE DE TRANSFERT DE CHALEUR DANS DES FOURS UTILISE POUR LE 
CHAUFFAGE DES REFRACTAIRES 

R&ssum&Presentation dun modele avanci: pour la prediction des profils de temperature du gaz et de 
l’element pendant le chauffage de blocs refractaires dans des fours. Le modtle reprisente le four comme 
une serie d’elements invariables oit le transfert de chaleur apparait, alternativement &pares par des regions 
adiabatiques et uniformes oti les brtileurs et les arrivees d’air sont introduits. Le modtle est concu en deux 
parties qui different dans le traitement de conduction instable dans l’ilement. La forme di-dimensionnelle 
correspond bien aux profils de temperature mesures pour les elements. La plus simple des formes une- 
dimensionnelle predit exactement les profils de temperature du gaz et donne une estimation des temperatures 
representatives de l’element. Les deux modtles donnent une solution a l’equation de conduction instable 

avec des conditions limites non lintaires qui sent dues au phenomtne de radiation. 

EIN MODELL DER WARMELEITUNG IN TUNNELBRENNOFEN ZUM BRENNEN 
VON FEUERFESTEN BLtiCKEN 

Zusammenfassung-Prasentiert wird ein verbessertes Model1 fiir die Voraussage von Gas- und Gut-Tem- 
peraturprofilen wahrend des Brennens von feuerfesten Blocken in Tunnelbrenniifen. Das Model1 stellt den 
Brenniifen als eine Reihe von Gebieten dar, wobei sich Gebiete mit Pfropfenstromung, in denen der 
Warmeiibergang stattfindet, mit adiabatischen, gut durchmischten Gebieten, in denen Brennen und 
Luftzutritte behandelt werden. abwechseln. Das Model1 ist in zwei Formen, die sich in der Behandlung 
der unstetigen Leitung im Gut unterscheiden, aufgebant. Die 2-dimensionale Form liefert gute Uber- 
einstimmung mit gemessenen Guttemperaturprofilen. Die einfachere I-dimensionale Form liefert exakte 
Voraussage der Gastemperaturprofile und schltzt reprlsentative Guttemperaturen ab. Beide Modelle l&en 

die unstetige Leitungsgleichung mit stark nicht-linearen Grenzbedingungen aufgrund von Strahlung. 

MOAEiJIb TEI-IJ’IOI’IEPEHOCA B l-IE’-IAX TYHHEJIbHOI-0 TNIA, ACI’IOJlb3YEMbIX WR 
OPTHI-A Ol-HEYl-IOPOB 

Amumum-rlpeanoXeHa ynyHmeHHan Moaenb n.mn pacueTa npor#mnefi TehmepaTypbr B ra3e H B Hsne- 
nHHx npH o6;rolre OrIieynopHbIx ~JIOKOB B newax TyHHenbHoro THHa. DeYb h4oHeHHpyeTcH PSI~OM o6nac- 
Teii co crep-atHeabrh4 pemlhro~ TeKeHHn, B KOTOphIX npoHcxo/lHT nepeH0c TeMa K HsAenHIO, 
nepehteXamwixcn C 3oHahm xoporuo nepeh4emamblx aHHa6aTHHeCKHX TerieHHH, a KoTopbie sneAefibI 

I-OpeJIKH H I-He npOHCXOAHT IlOACCiC BO3AyXa. I-@HJIO~eHbl HBe MOHeJTH, OTJIH’IaKIIHHeCX OnHCaHHeM 
HeCTaHHOHapHOir TeHJlOnpOBOHHOCTH B H3AeJIHH. flBy?.fepHaH MOAeJlb HaeT XOpOmee COBnaAeHHe C 
H3h4epeHHbrhtsi Temepa-iyptiarhm npo@mmm HsnenHii. Bonee npoc-ran omiohtepttan @ophta AaeT 

TO’iHbIe 3Ha‘ieHHR TeMHepaTyIJHblX npO@Teti B ra3e H nOCTOHepHyl0 OHeHKy TeMnepaTypbl H3HeJTHji. B 
06eHX MOAeJlRX peUIaeTCH HeCTaHHOHapHOe ypaBHeHHe Tel’“IOnpOBO)H%3CTH ITpH CHJIbHO HenHHefiHblX 

TpaHHSHblX yCJTOBUKX, 06yCJIOBHeHHbIX H3Jly’IeHUeM. 


